- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Kundu, B (3)
-
Linte, CA (3)
-
Simon, R (3)
-
Khanal, B (2)
-
Kundu, B. (1)
-
Rogers, S. (1)
-
Sutton, G. (1)
-
Yang, Z (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Rettmann, ME (1)
-
Rettmann, Maryam E (1)
-
Siewerdsen, JH (1)
-
Siewerdsen, Jeffrey H (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 29, 2026
-
Kundu, B; Khanal, B; Simon, R; Linte, CA (, SPIE Digital Library)Rettmann, Maryam E; Siewerdsen, Jeffrey H (Ed.)Free, publicly-accessible full text available April 7, 2026
-
Kundu, B; Yang, Z; Simon, R; Linte, CA (, Proc SPIE - Image-guided Procedures, Robotic Interventions and Modeling)Rettmann, ME; Siewerdsen, JH (Ed.)
-
Kundu, B.; Rogers, S.; Sutton, G. (, Biomimetic and Biohybrid Systems)Behaviors that are produced solely through geometrically complex three-dimensional interactions of soft-tissue muscular elements, and which do not move rigid articulated skeletal elements, are a challenge to mechanically model. This complexity often leads to simulations requiring substantial computational time. We discuss how using a quasi-static approach can greatly reduce the computational time required to model slow-moving soft-tissue structures, and then demonstrate our technique using the biomechanics of feeding behavior by the marine mollusc, Aplysia californica. We used a conventional 2nd order (from Newton’s equations), forward dynamic model, which required 14 s to simulate 1 s of feeding behavior. We then used a quasi-static reformulation of the same model, which only required 0.35 s to perform the same task (a 40-fold improvement in computation speed). Lastly, we re-coded the quasi-static model in Python to further increase computation speed another 3-fold, creating a model that required just 0.12 s to model 1 s of feeding behavior. Both quasi-static models produce results that are nearly indistinguishable from the original 2nd order model, showing that quasi-static formulations can greatly increase the computation speed without sacrificing model accuracy.more » « less
An official website of the United States government
